
人人人工工工智智智能能能：：：游游游走走走在在在神神神经经经和和和符符符号号号之之之间间间

刘群 LIU Qun

华为诺亚方舟实验室

中国计算语言学大会 CCL 2024,太原

2024.07.28

神经和符号的结合是实现真正的人类水平智能的必经之路

符号化知识表示的类型及其与大语言模型结合的方法

在Transformer架构中引入符号计算模块的设想

总结

Content

大语言模型的符号计算能力仍然欠缺

Published as a conference paper at ICLR 2024

THE REVERSAL CURSE:
LLMS TRAINED ON “A IS B” FAIL TO LEARN “B IS A”

Lukas Berglund
Vanderbilt University

Meg Tong
Independent

Max Kaufmann
UK AI Safety Institute

Mikita Balesni
Apollo Research

Asa Cooper Stickland
New York University

Tomasz Korbak
University of Sussex

Owain Evans∗
University of Oxford

ABSTRACT

We expose a surprising failure of generalization in auto-regressive large language
models (LLMs). If a model is trained on a sentence of the form “A is B”, it will
not automatically generalize to the reverse direction “B is A”. This is the Reversal
Curse. For instance, if a model is trained on “Valentina Tereshkova was the first
woman to travel to space”, it will not automatically be able to answer the question,
“Who was the first woman to travel to space?”. Moreover, the likelihood of the
correct answer (“Valentina Tershkova”) will not be higher than for a random name.
Thus, models do not generalize a prevalent pattern in their training set: if “A is B”
occurs, “B is A” is more likely to occur. It is worth noting, however, that if “A is B”
appears in-context, models can deduce the reverse relationship.

We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1
on fictitious statements such as “Uriah Hawthorne is the composer of Abyssal
Melodies” and showing that they fail to correctly answer “Who composed Abyssal
Melodies?”. The Reversal Curse is robust across model sizes and model families
and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-
3.5 and GPT-4) on questions about real-world celebrities, such as “Who is Tom
Cruise’s mother? [A: Mary Lee Pfeiffer]” and the reverse “Who is Mary Lee
Pfeiffer’s son?”. GPT-4 correctly answers questions like the former 79% of the
time, compared to 33% for the latter.

Code available at: https://github.com/lukasberglund/reversal_
curse.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer”) do not automatically infer “B is A”.

1 INTRODUCTION

If a human learns the fact “Valentina Tereshkova was the first woman to travel to space”, they can
also correctly answer “Who was the first woman to travel to space?”. This is such a basic form
of generalization that it seems trivial. Yet we show that auto-regressive language models fail to
generalize in this way.

∗Corresponding author: owaine@gmail.com

1

ar
X

iv
:2

30
9.

12
28

8v
4

 [
cs

.C
L

]
 2

6
M

ay
 2

02
4

Published as a conference paper at ICLR 2024

THE REVERSAL CURSE:
LLMS TRAINED ON “A IS B” FAIL TO LEARN “B IS A”

Lukas Berglund
Vanderbilt University

Meg Tong
Independent

Max Kaufmann
UK AI Safety Institute

Mikita Balesni
Apollo Research

Asa Cooper Stickland
New York University

Tomasz Korbak
University of Sussex

Owain Evans∗
University of Oxford

ABSTRACT

We expose a surprising failure of generalization in auto-regressive large language
models (LLMs). If a model is trained on a sentence of the form “A is B”, it will
not automatically generalize to the reverse direction “B is A”. This is the Reversal
Curse. For instance, if a model is trained on “Valentina Tereshkova was the first
woman to travel to space”, it will not automatically be able to answer the question,
“Who was the first woman to travel to space?”. Moreover, the likelihood of the
correct answer (“Valentina Tershkova”) will not be higher than for a random name.
Thus, models do not generalize a prevalent pattern in their training set: if “A is B”
occurs, “B is A” is more likely to occur. It is worth noting, however, that if “A is B”
appears in-context, models can deduce the reverse relationship.

We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1
on fictitious statements such as “Uriah Hawthorne is the composer of Abyssal
Melodies” and showing that they fail to correctly answer “Who composed Abyssal
Melodies?”. The Reversal Curse is robust across model sizes and model families
and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-
3.5 and GPT-4) on questions about real-world celebrities, such as “Who is Tom
Cruise’s mother? [A: Mary Lee Pfeiffer]” and the reverse “Who is Mary Lee
Pfeiffer’s son?”. GPT-4 correctly answers questions like the former 79% of the
time, compared to 33% for the latter.

Code available at: https://github.com/lukasberglund/reversal_
curse.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer”) do not automatically infer “B is A”.

1 INTRODUCTION

If a human learns the fact “Valentina Tereshkova was the first woman to travel to space”, they can
also correctly answer “Who was the first woman to travel to space?”. This is such a basic form
of generalization that it seems trivial. Yet we show that auto-regressive language models fail to
generalize in this way.

∗Corresponding author: owaine@gmail.com

1

ar
X

iv
:2

30
9.

12
28

8v
4

 [
cs

.C
L

]
 2

6
M

ay
 2

02
4

常识理解 数学推理

1 total: 36

实现真正的人类水平智能，需要AI模型中引入符号计算吗？

不需要，神经网络将通过Scaling Law将
自然获得符号计算的能力

需要，神经网络无法精确推理，需研究神
经符号结合的方法

Geoffery Hilton Ilya Sutskever Yoshua Bengio Gary Marcus

2 total: 36

为什么基于神经网络的语言模型很难达到人类水平智能？

▶ 人类的思维可以在系统1和系统2之间自如切换，而目前的大语言模型的大语言
模型的神经计算和符号计算是完全脱节的。

▶ 人类在说出一个句子之前，大脑里面可以用符号的方式（也就是通过系统2）
进行思考，而神经网络模型在输出一个token之前，所有的计算都是基于神经
的。

▶ 人类大脑中有一个海马体组织，可以保持与时间和空间相关的短期记忆和长期
记忆，而目前的神经网络模型缺乏类似的模块。

3 total: 36

信息系统抽象的层次

语言表达

主观认知

客观世界

神经网络

4 (1) total: 36

信息系统抽象的层次

语言表达

主观认知

客观世界

神经网络

参数

Tokens

实体
属性
关系
事件
时空
因果
……

原子
分子
物质
声
光
电
……

4 (2) total: 36

信息系统抽象的层次

语言表达

主观认知

客观世界

大语言模型

神经网络

参数

Tokens

实体
属性
关系
事件
时空
因果
……

原子
分子
物质
声
光
电
……

推理
输入输出

4 (3) total: 36

神经网络的参数化表示与主观认知之间存在GAP

大语言模型对于最基本的实体、属性、数量等基本的认知都还存在很多问题：
▶ 文本生成错误例（来自TGEA2.0）：

▶ 血和着鲜血,从她白嫩光洁的面颊上流淌下来。
▶ 这套样板房以一个正方形为主题,整个房间被分成了5个部分: 客厅、餐厅、书房
和卧室。

▶ 而辰口发出的四封信和几张明信片也来到耐子手中,她打开一看,是一幅自己画的
漫画。

▶ 文生视频错误例（来自Sora）：

5 total: 36

神经与符号的GAP是目前大模型很多问题的根源

▶ 人类认知表示最自然的形式是实体、
属性、关系、时空、事件、因果等
等，这些都最适合用符号来表示

▶ 而目前的大语言模型的基本构成单位
是参数，所有的计算和推理都发生在
参数之间，跟认知所使用的符号表示
的形式存在巨大的差异

▶ 这种差异是造成目前大模型很多问题
的根源

神经与符号

接地
Grounding

对齐
Alignment

世界模型

可解释性

System1 &
System2

确定性与
不确定性

因果与相关

6 total: 36

神经和符号的结合是实现真正的人类水平智能的必经之路

符号化知识表示的类型及其与大语言模型结合的方法

在Transformer架构中引入符号计算模块的设想

总结

Content

符号化知识表示的类型及其与大语言模型结合的方法

符号化知识表示的类型

自然语言与神经网络结合的方法

形式语言与神经网络结合的方法

图表语言与神经网络结合的方法

Content

符号化知识表示的多样性难题

▶ 神经网络为所有问题提供统一的解决方案，而符号化知识形式非常多样化，每
种形式特点不同，面临的问题也不同

▶ 不同的符号化知识表示形式，需要采用不同的方式与神经网络结合

▶ 是否存在统一的形式化知识表示形式，可以解决所有符号推理问题？

▶ 如果不存在，有哪些主要的符号化知识表示形式？各自有什么特点？如何与大
语言模型结合进行推理？

7 total: 36

符号化知识表示的形式

▶ Declarative knowledge陈述性知识
▶ 描述概念、实体、事实
▶ 以陈述句形式描述

▶ Procedural knowledge过程性知识
▶ 包括规则、策略、过程、议程等
▶ 可以执行完成任务

▶ Meta-knowledge元知识
▶ 关于知识的知识

▶ Heuristic knowledge启发式知识
▶ 专家根据经验获得的领域或专业知识

▶ Structural knowledge结构化知识
▶ 概念之间的上下位或者整体部分关系等知识
▶ 解决问题所需要的知识

Source: https://www.javatpoint.com/knowledge-representation-in-ai

8 total: 36

https://www.javatpoint.com/knowledge-representation-in-ai

符号化知识表示的类型

▶ 自然语言
▶ 词、短语、句子、篇章

▶ 语义网（Semantic Web）、知识图谱
▶ 知识本体（Ontologies）
▶ 实体知识图谱（Entities/Relations/Facts）
▶ 事理知识图谱（Events）

▶ 程序语言（规则都可以表示为程序）
▶ 函数式程序语言、过程式程序语言、面向对象程序语言

▶ 逻辑语言
▶ 布尔逻辑、命题逻辑、描述逻辑、构造逻辑、一阶谓词逻辑、高阶谓词逻辑

▶ 图表语言
▶ 表格（Tables、Spreadsheets）、图（graphs）、自由图表（Diagrams）

9 (1) total: 36

符号化知识表示的类型

自然语言

图表语言

形式语言

程序语言 逻辑语言

中文, English, Español, Français, Deutsch, 日本語, Русский, Português, Italiano, 한국어

表格 图 自由图表

产生式规则

Python

C C++

Latex
Json

Markdown

HTML

JavaScript
布尔逻辑

命题逻辑描述逻辑

构造逻辑

一阶谓词逻辑

高阶谓词逻辑知识图谱

9 (2) total: 36

符号化知识表示的类型及其与大语言模型结合的方法

符号化知识表示的类型

自然语言与神经网络结合的方法

形式语言与神经网络结合的方法

图表语言与神经网络结合的方法

Content

自然语言与神经网络结合的方法

▶ 自然语言是最自然的符号表示形式

▶ 语言也是对大语言模型最亲和的一种符号表示形式

▶ 但自然语言本身的推理能力有限

▶ 自然语言与神经网络结合可以通过Chain-of-Thought及其各种衍生
的X-of-Thought来实现复杂的推理

▶ 自然语言推理通常缺乏自动化的验证方法，只能通过人工来验证，很难通过自
动化的方式来迭代提高

10 total: 36

Chain-of-Thought and Thinking-Step-by-Step

(c) Zero-shot
Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A: The answer (arabic numerals) is

(Output) 8 X

(d) Zero-shot-CoT (Ours)
Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. ✓

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4. ✓

(b) Few-shot-CoT(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A:

(Output) The answer is 8. X

Figure 1: Example inputs and outputs of GPT-3 with (a) standard Few-shot ([Brown et al., 2020]), (b)
Few-shot-CoT ([Wei et al., 2022]), (c) standard Zero-shot, and (d) ours (Zero-shot-CoT). Similar to
Few-shot-CoT, Zero-shot-CoT facilitates multi-step reasoning (blue text) and reach correct answer
where standard prompting fails. Unlike Few-shot-CoT using step-by-step reasoning examples per
task, ours does not need any examples and just uses the same prompt “Let’s think step by step” across
all tasks (arithmetic, symbolic, commonsense, and other logical reasoning tasks).

In contrast to the excellent performance of LLMs in intuitive and single-step system-1 [Stanovich
and West, 2000] tasks with task-specific few-shot or zero-shot prompting [Liu et al., 2021b], even
language models at the scale of 100B or more parameters had struggled on system-2 tasks requiring
slow and multi-step reasoning [Rae et al., 2021]. To address this shortcoming, Wei et al. [2022],
Wang et al. [2022] have proposed chain of thought prompting (CoT), which feed LLMs with the
step-by-step reasoning examples rather than standard question and answer examples (see Fig. 1-a).
Such chain of thought demonstrations facilitate models to generate a reasoning path that decomposes
the complex reasoning into multiple easier steps. Notably with CoT, the reasoning performance then
satisfies the scaling laws better and jumps up with the size of the language models. For example,
when combined with the 540B parameter PaLM model [Chowdhery et al., 2022], chain of thought
prompting significantly increases the performance over standard few-shot prompting across several
benchmark reasoning tasks, e.g., GSM8K (17.9%→ 58.1%).

While the successes of CoT prompting [Wei et al., 2022], along those of many other task-specific
prompting work [Gao et al., 2021, Schick and Schütze, 2021, Liu et al., 2021b], are often attributed
to LLMs’ ability for few-shot learning [Brown et al., 2020], we show that LLMs are decent zero-shot
reasoners by adding a simple prompt, Let’s think step by step, to facilitate step-by-step thinking before
answering each question (see Figure 1). Despite the simplicity, our Zero-shot-CoT successfully
generates a plausible reasoning path in a zero-shot manner and reaches the correct answer in a
problem where the standard zero-shot approach fails. Importantly, our Zero-shot-CoT is versatile and
task-agnostic, unlike most prior task-specific prompt engineering in the forms of examples (few-shot)
or templates (zero-shot) [Liu et al., 2021b]: it can facilitate step-by-step answers across various
reasoning tasks, including arithmetic (MultiArith [Roy and Roth, 2015], GSM8K [Cobbe et al., 2021],
AQUA-RAT [Ling et al., 2017], and SVAMP [Patel et al., 2021]), symbolic reasoning (Last letter and
Coin flip), commonsense reasoning (CommonSenseQA [Talmor et al., 2019] and Strategy QA [Geva
et al., 2021]), and other logical reasoning tasks (Date understanding and Tracking Shuffled Objects
from BIG-bench [Srivastava et al., 2022]) without modifying the prompt per task.

We empirically evaluate Zero-shot-CoT against other prompting baselines in Table 2. While our
Zero-shot-CoT underperforms Few-shot-CoT with carefully-crafted and task-specific step-by-step ex-
amples, Zero-shot-CoT achieves enormous score gains compared to the zero-shot baseline, e.g. from
17.7% to 78.7% on MultiArith and from 10.4% to 40.7% on GSM8K with large-scale InstructGPT

2

Kojima et al., Large Language Models are Zero-Shot Reasoners, arXiv:2205.11916v4, 2023

11 total: 36

Self-consistency improves CoT
Published as a conference paper at ICLR 2023

Language
model

Q: If there are 3 cars in the parking
lot and 2 more cars arrive, how many
cars are in the parking lot?
A: There are 3 cars in the parking lot
already. 2 more arrive. Now there are
3 + 2 = 5 cars. The answer is 5.
…
Q: Janet’s ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells
the remainder for $2 per egg. How
much does she make every day?
A:

She has 16 - 3 - 4 = 9 eggs
left. So she makes $2 * 9 =
$18 per day.

Sample a diverse set of
reasoning paths

She eats 3 for breakfast, so
she has 16 - 3 = 13 left. Then
she bakes muffins, so she
has 13 - 4 = 9 eggs left. So
she has 9 eggs * $2 = $18.

This means she she sells the
remainder for $2 * (16 - 4 - 3)
= $26 per day.

The answer is $18.

The answer is $26.

The answer is $18.

The answer is $18.

Marginalize out reasoning paths
to aggregate final answers

Language
model

This means she uses 3 + 4 = 7 eggs every day.
She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.
The answer is $14.

The answer is $14.

Greedy decode

Figure 1: The self-consistency method contains three steps: (1) prompt a language model using
chain-of-thought (CoT) prompting; (2) replace the “greedy decode” in CoT prompting by sampling
from the language model’s decoder to generate a diverse set of reasoning paths; and (3) marginalize
out the reasoning paths and aggregate by choosing the most consistent answer in the final answer set.

Self-consistency is far simpler than prior approaches that either train an additional verifier (Cobbe
et al., 2021) or train a re-ranker given additional human annotations to improve generation quality
(Thoppilan et al., 2022). Instead, self-consistency is entirely unsupervised, works off-the-shelf with
pre-trained language models, requires no additional human annotation, and avoids any additional
training, auxiliary models or fine-tuning. Self-consistency also differs from a typical ensemble
approach where multiple models are trained and the outputs from each model are aggregated, it acts
more like a “self-ensemble” that works on top of a single language model.

We evaluate self-consistency on a wide range of arithmetic and commonsense reasoning tasks over
four language models with varying scales: the public UL2-20B (Tay et al., 2022) and GPT-3-175B
(Brown et al., 2020), and two densely-activated decoder-only language models: LaMDA-137B
(Thoppilan et al., 2022) and PaLM-540B (Chowdhery et al., 2022). On all four language models,
self-consistency improves over chain-of-thought prompting by a striking margin across all tasks. In
particular, when used with PaLM-540B or GPT-3, self-consistency achieves new state-of-the-art levels
of performance across arithmetic reasoning tasks, including GSM8K (Cobbe et al., 2021) (+17.9%
absolute accuracy gains), SVAMP (Patel et al., 2021) (+11.0%), AQuA (Ling et al., 2017) (+12.2%),
and across commonsense reasoning tasks such as StrategyQA (Geva et al., 2021) (+6.4%) and ARC-
challenge (Clark et al., 2018) (+3.9%). In additional experiments, we show self-consistency can
robustly boost performance on NLP tasks where adding a chain-of-thought might hurt performance
compared to standard prompting (Ye & Durrett, 2022). We also show self-consistency significantly
outperforms sample-and-rank, beam search, ensemble-based approaches, and is robust to sampling
strategies and imperfect prompts.

2 SELF-CONSISTENCY OVER DIVERSE REASONING PATHS

A salient aspect of humanity is that people think differently. It is natural to suppose that in tasks
requiring deliberate thinking, there are likely several ways to attack the problem. We propose that
such a process can be simulated in language models via sampling from the language model’s decoder.
For instance, as shown in Figure 1, a model can generate several plausible responses to a math
question that all arrive at the same correct answer (Outputs 1 and 3). Since language models are not
perfect reasoners, the model might also produce an incorrect reasoning path or make a mistake in
one of the reasoning steps (e.g., in Output 2), but such solutions are less likely to arrive at the same
answer. That is, we hypothesize that correct reasoning processes, even if they are diverse, tend to
have greater agreement in their final answer than incorrect processes.

We leverage this intuition by proposing the following self-consistency method. First, a language
model is prompted with a set of manually written chain-of-thought exemplars (Wei et al., 2022). Next,

2

Wang et al., Self-Consistency Improves Chain Of Thought Reasoning In Language Models, arXiv:2203.11171v4, 2022

12 total: 36

Progressive-Hint Prompting improves CoT

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth-
grade boys were absent. How many fourth grade boys were
at Small Tree School on Friday?

A: There were 96 fourth-graders at Small Tree School. 43 of
them were girls. On Friday, 5 girls and 4 boys were absent.
So there were 43 - 5 = 38 girls at school on Friday, and 96 -
38 = 58 boys at school on Friday. The answer is 58.

A: We know the Answer Hints: 58. With the Answer
Hints: 58, we will answer the question. There were 96
fourth-graders at Small Tree School, and 43 of them were
girls.On Friday, 5 girls and 4 boys were absent.So there
were 43 - 5 = 38 girls and 96 - 43 = 53 boys at Small Tree
School on Friday.After subtracting the absent students,
there were 38 - 4 = 34 girls and 53 - 5 = 48 boys. The
answer is 48.

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth-
grade boys were absent. How many fourth grade boys were
at Small Tree School on Friday? (Hint: The answer is near
to 58).

A: We know the Answer Hints: 58, 48. With the Answer
Hints: 58, 48, we will answer the question. There were 96
fourth-graders, and 43 of them were girls. On Friday, 5 girls
and 4 boys were absent. So there were 43 - 5 = 38 girls and
96 - 9 = 87 students in total. Of those 87 students, 38 were
girls, so there must have been 87 - 38 = 49 boys. The
answer is 49.

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth-
grade boys were absent. How many fourth grade boys were
at Small Tree School on Friday? (Hint: The answer is near
to 58, 48).

A: We know the Answer Hints: 58, 48, 49. With the
Answer Hints: 58, 48, 49, we will answer the question.
There were 96 fourth-graders at Small Tree School, and 43
of them were girls. On Friday, 5 girls and 4 boys were
absent. So there were 43 - 5 = 38 girls and 96 - 43 = 53
boys originally. After the absences, there were 38 - 5 = 33
girls and 53 - 4 = 49 boys. The answer is 49.

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth-
grade boys were absent. How many fourth grade boys were
at Small Tree School on Friday? (Hint: The answer is near
to 58, 48, 49).

Base
Answer

Second
Answer

Fourth
Answer

Third
Answer

LLM

LLM

LLM

LLM

Base Prompting

Progressive-Hint Prompting

Progressive-Hint Prompting

Progressive-Hint Prompting

Figure 1: Our proposed Progressive-Hint Prompting method combines the generated answers and
questions for double-checking purposes, which is divided into two stages. In the first stage, we
generate a base answer by passing to the LLM a concatenation of the current question and a base
prompt, such as CoT or Complex CoT. In the second stage, we generate the subsequent answers via
the corresponding progressive-hint prompt, such as Progressive-Hint Prompting CoT (PHP-CoT)
or Progressive-Hint Prompting Complex CoT (PHP-Complex CoT), for the subsequent interaction.
The interaction stops when two consecutive answers are the same. Purple Box: The input of LLM.
Orange Box: The output of LLM.

operation in (2) until the answer is stable and does not change over the last two answers. PHP follows
a human-like thought process where previous answers are leveraged as hints to arrive at the correct
answer after re-evaluating the question.

Figure 1 illustrates the proposed PHP framework. We use the base prompt to obtain the initial base
answer, and then employ the PHP prompt for subsequent questions. If the current answer matches the
previous answer, it is more likely to be correct, and we terminate the LLM inquiry. With Complex
CoT and GPT-4, after adding PHP, the performance achieves SOTA with 91.9% on SVAMP [11],
95.5% on GSM8K [12], and 79.9% on AQuA [13] and 53.9% on MATH [14].

In summary, our contributions are as follows:

• We propose a new method, Progressive-Hint Prompting (PHP), alongside CoT and self-
consistency, for improving LLM reasoning abilities.

• We demonstrate the effectiveness of PHP through extensive experimentation, including
baseline comparisons and ablation studies, using four LLMs, text-davinci-002 and text-
davinci-003, GPT-3.5-Turbo and GPT-4 [15–17].

• The experiment results show that our method can also improve performance with self-
consistency.

• We believe that progressive-hint prompting represents an important step towards automatic
sequential interaction with LLMs and hope that it inspires future research in this field.

2 Related Work

Emergent Abilities and Multi-Step Reasoning. LLMs are particularly skilled at in-context learning,
which involves adhering to the structure of prompts (typically few-shot) and completing corresponding
tasks [15, 18–20]. Among the diverse range of language comprehension tasks, we are particularly

2

Zheng et al., Progressive-Hint Prompting Improves Reasoning in Large Language Models, arXiv:2304.09797v5, 2023

13 total: 36

符号化知识表示的类型及其与大语言模型结合的方法

符号化知识表示的类型

自然语言与神经网络结合的方法

形式语言与神经网络结合的方法

图表语言与神经网络结合的方法

Content

形式语言与神经网络结合的方法

▶ 形式语言主要有两类：程序语言和逻辑语言。

▶ 形式语言都没有歧义，是最精确的符号表示形式。
▶ 形式语言与神经网络的结合都面临两类问题：

▶ 自然语言到形式语言的转换问题：如何自将然语言描述的问题转换成形式语言
（逻辑或程序）：

▶ 这更多是自然语言理解问题
▶ 可以采用XoT方法提高推理准确率
▶ 或者采用数据合成方法构造更多更好的训练数据

▶ 形式语言本身的生成问题：如何生成正确的程序语言：
▶ 由于形式语言自身有明确的语义，因此是可以通过引入外部符号引擎进行验证
▶ 可以采用蒙特卡洛搜索等方法寻找更好的结果

▶ 在特定约束条件下，数学定理证明和函数式编程存在某种严格的对应关系（科
里-霍华德同构），因此数学定理证明问题可以转换成代码生成问题。

14 total: 36

MetaMath: 通过训练数据增强改进LLM数学问题求解能力

Published as a conference paper at ICLR 2024

METAMATH: BOOTSTRAP YOUR OWN MATHEMATICAL

QUESTIONS FOR LARGE LANGUAGE MODELS

Longhui Yu1,⋆ Weisen Jiang2,3,⋆ Han Shi4,† Jincheng Yu3,4 Zhengying Liu4

Yu Zhang2 James T. Kwok3 Zhenguo Li4 Adrian Weller1,5 Weiyang Liu1,6,†

1University of Cambridge 2Southern University of Science and Technology
3Hong Kong University of Science and Technology 4Huawei Noah’s Ark Lab
5The Alan Turing Institute 6Max Planck Institute for Intelligent Systems - Tübingen
yulonghui@stu.pku.edu.cn, wjiangar@cse.ust.hk, shi.han@huawei.com, wl396@cam.ac.uk

Project page: meta-math.github.io

ABSTRACT

Large language models (LLMs) have pushed the limits of natural language un-
derstanding and exhibited excellent problem-solving ability. Despite the great
success, most existing open-source LLMs (e.g., LLaMA-2) are still far away from
satisfactory for solving mathematical problems due to the complex reasoning proce-
dures. To bridge this gap, we propose MetaMath, a finetuned language model that
specializes in mathematical reasoning. Specifically, we start by bootstrapping math-
ematical questions by rewriting the question from multiple perspectives, which
results in a new dataset called MetaMathQA. Then we finetune the LLaMA-2
models on MetaMathQA. Experimental results on two popular benchmarks (i.e.,
GSM8K and MATH) for mathematical reasoning demonstrate that MetaMath out-
performs a suite of open-source LLMs by a significant margin. Our MetaMath-7B
model achieves 66.5% on GSM8K and 19.8% on MATH, exceeding the state-of-
the-art models of the same size by 11.5% and 8.7%. Particularly, MetaMath-70B
achieves an accuracy of 82.3% on GSM8K, slightly better than GPT-3.5-Turbo.
We release the MetaMathQA dataset, the MetaMath models with different model
sizes and the training code for public use.

Meta-Question: James buys 5

packs of beef that are 4 pounds each.

The price of beef is $5.50 per pound.

How much did he pay?

MetaMathQA

Answer: He bought 5*4=20

pounds of beef. So he paid 20 * 5.5

= $110. The answer is: 110

Self-Verification Question: James buys x packs of beef that are 4

pounds each. The price of beef is $5.50 per pound. He paid 110. What is

the value of unknown variable x? Answer: ……

Rephrasing Question: What is the total amount that James paid when

he purchased 5 packs of beef, each weighing 4 pounds, at a price of $5.50

per pound? Answer: ……

FOBAR Question: James buys x packs of beef that are 4 pounds each.

The price of beef is $5.50 per pound. How much did he pay? If we know

the answer to the above question is 110, what is the value of unknown

variable x? Answer: ……

Answer Augment: James buys 5 packs of beef that are 4 pounds each,

so he buys a total of 5 * 4 = 20 pounds of beef. The price of beef is $5.50

per pound, so he pays 20 * $5.50 = $110. The answer is: 110

Question Bootstrapping

MetaMath
Finetune

LLaMA-2

Original Data

7B 13B 70B
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

66.5
72.3

82.3

GSM8K
SFT RFT WizardMath MetaMath

7B 13B 70B
0

5

10

15

20

25

30

Te
st

 A
cc

ur
ac

y
(%

)

19.8
22.4

26.6

MATH
LLaMA-2 WizardMath MetaMath

Figure 1: Overview of the MetaMathQA dataset and the mathematical problem-solving LLM – MetaMath. We
note that our MetaMath-70B is finetuned by QLoRA [15] due to the computing resource limitation.

⋆Equal contribution †Corresponding author

1

ar
X

iv
:2

30
9.

12
28

4v
4

 [
cs

.C
L

]
 3

 M
ay

 2
02

4

Yu et al.,Metamath: Bootstrap Your Own Mathematical Questions For Large Language Models, arXiv:2309.12284v4

15 total: 36

The Curry-Howard Isomorphism科里-霍华德同构

▶ 柯里-霍华德对应（英语：Curry-Howard correspondence）是在计算机程序和
数学证明之间的紧密联系；这种对应也叫做柯里-霍华德同构、公式为类型对应
或命题为类型对应。

▶ 这是对形式逻辑系统和公式计算（computational calculus）之间符号的相似性
的推广。

▶ 它被认为是由美国数学家哈斯凯尔·布鲁克·柯里（Haskell Brooks Curry）和逻
辑学家威廉·阿尔文·霍华德William Alvin Howard）独立发现的。

▶ 有多种方式考虑柯里-霍华德对应。
▶ 在一个方向上，它工作于“把证明编译为程序”级别上。这里的“证明”最初
被限定为在构造性逻辑中—典型的是直觉逻辑系统中的证明。而“程序”是在
常规的函数式编程的意义上的；从语法的观点上看，这种程序是用某种セ演算
表达的。所以柯里-霍华德同构的具体实现是详细研究如何把来自直觉逻辑的证
明写成セ项。

16 (1) total: 36

The Curry-Howard Isomorphism科里-霍华德同构

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Through the looking glass

The mathematician

Theorem. For all n ∈ N, there exists
p ∈ N such that n = 2p or n = 2p + 1.

Proof. By induction on n.
If n = 0 then this is obvious.
Otherwise, assume that
n = m + 1. By the induction
hypothesis, we know that there
exists some p such that m = 2p
or m = 2p + 1.

In the first case, n = 2p + 1.
Otherwise n = 2(p + 1).

The programmer

val div2 : int -> int * bool
(* [div2 n] returns the integer
division by 2 of [n] together with
a boolean indicating if [n] is
even. *)

let rec div2 n = match n with
| 0 -> (0, true)
| m + 1 ->

let (p, even) = div2 m in
if even then (p, false)
else (p + 1, true)

Pierre-Marie Pédrot (PPS/πr2) The Curry-Howard isomorphism 17/02/2015 5 / 20

Slides: Pierre-Marie Pédrot, The Curry-Howard isomorphism for Dummies

16 (2) total: 36

The Curry-Howard Isomorphism科里-霍华德同构

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Rosetta’s Stone

Logic CS
Proofs Programs

Formula Types
A implies B function from A to B

A and B pair of A and B
A or B tagged union of A and B
falsity empty type
truth singleton type

for all x ∈ A, B(x) dependent product from A to B
Axiom System primitive

Soundness theorem Compiler
Completeness theorem Debugger

Incompleteness theorem Infinite loop

Pierre-Marie Pédrot (PPS/πr2) The Curry-Howard isomorphism 17/02/2015 8 / 20Slides: Pierre-Marie Pédrot, The Curry-Howard isomorphism for Dummies
16 (3) total: 36

Lean语言

▶ Lean是一款在包含归纳类型的构造演算基础上所开发的计算机定理证明辅助工
具和函数式编程语言。

▶ Lean语言既是一种函数式编程语言，
▶ Lean语言又是一种形式化数学定理证明工具，用Lean语言写的数学定理证明
可以保证其正确性。

▶ 包括陶哲轩在内的一些数学家计划将现有的大部分数学定理证明都用Lean语言
表示出来，目前已经有了一个初步的定理证明库MathLib

▶ Lean语言也成为了基于AI进行数学定理证明的有效工具

17 total: 36

Theorem Proving - Holy Grail of AI
Theorem Proving - Holy Grail of AI

• Very general and most challenging form of intelligence

• Special cases: SAT, SMT, first-order logic, math word problems

• Applications:
• Formal verification => 100% correct code with theoretical guarantee

• Code generation => assist/replace coders (and with 100% correctness)

• AI for Math => education, solve open problems, create new algorithms

Hilbert Turing Shannon

...

Sutskever Lample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

18 total: 36

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

19 (1) total: 36

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

AI

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

19 (2) total: 36

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

AI

its proof

State:
⊢ a + b + c = c + b + a

⊢ a + b + c = b + c + a

⊢ a + b + c = a + (b + c)

goals accomplished 🎉

Action:

1. Use add_comm on c and b

2. Use add_comm on (b + c) and a

3. This is exactly add_assoc

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

19 (3) total: 36

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

(undecidable in most cases, by Gödel Incompleteness Theorem. But it suffices to achieve human performance.)

AI

its proof

State:
⊢ a + b + c = c + b + a

⊢ a + b + c = b + c + a

⊢ a + b + c = a + (b + c)

goals accomplished 🎉

Action:

1. Use add_comm on c and b

2. Use add_comm on (b + c) and a

3. This is exactly add_assoc

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

19 (4) total: 36

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

(undecidable in most cases, by Gödel Incompleteness Theorem. But it suffices to achieve human performance.)

AI

But in what “language”?

its proof

State:
⊢ a + b + c = c + b + a

⊢ a + b + c = b + c + a

⊢ a + b + c = a + (b + c)

goals accomplished 🎉

Action:

1. Use add_comm on c and b

2. Use add_comm on (b + c) and a

3. This is exactly add_assoc

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

19 (5) total: 36

Automated Theorem Proving (ATP) - the Problem
Automated Theorem Proving (ATP) - the Problem

∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑏 + 𝑎

a proposition

（and a library of proven theorems）

(undecidable in most cases, by Gödel Incompleteness Theorem. But it suffices to achieve human performance.)

AI

But in what “language”?

its proof

State:
⊢ a + b + c = c + b + a

⊢ a + b + c = b + c + a

⊢ a + b + c = a + (b + c)

goals accomplished 🎉

Action:

1. Use add_comm on c and b

2. Use add_comm on (b + c) and a

3. This is exactly add_assoc

We use: Lean theorem prover

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

19 (6) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym
language model

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (1) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

init_search:

add_abc real
(theorem name, namespaces) language model

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (2) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (3) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (4) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (5) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (6) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (7) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

run_tac:

add_comm c b

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (8) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

⊢ a + b + c = b + c + a
(new tactic state)

run_tac:

add_comm c b

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (9) total: 36

Interaction between the prover (Lean) and the language modelInteraction between the prover and Lean

[1] Polu, S. et al. Formal Mathematics Statement Curriculum Learning. 2022.

lean-gym [1] provides a theorem proving environment

lean-gym

⊢ a + b + c = c + b + a
(initial tactic state)

init_search:

add_abc real
(theorem name, namespaces) language model

GOAL ⊢ a + b + c = c + b + a PROOFSTEP
(prompt)

add_comm c b
(tactic)

⊢ a + b + c = b + c + a
(new tactic state)

...

run_tac:

add_comm c b

infer / sample

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

20 (10) total: 36

DT-Solver (ACL 2023)
DT-Solver (ACL 2023)

Wang et al., DT-Solver: Automated Theorem Proving with ..., ACL 2023

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

21 total: 36

MUSTARD (ICLR 2024)
MUSTARD (ICLR 2024)

Y. Huang et al., “MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data,”
Y. Huang et al., MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data, ICLR 2024

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

22 total: 36

LEGO-Prover (ICLR 2024)

LEGO-Prover = Prover + Evolver

Prover: the prover proves the theorem modularly using
the retrieved skill.
Input:

- informal & formal statement
- 6 retrieved skills from skill library

Output:
- formal proof
- new skill

Evolver: the evolver transforms the skill for reusability
and generalizability.
Input:

- Skill in the skill library
Output:

- Verified evolved skill

Prover

Evolver

LEGO-Prover (ICLR 2024)

Wang, H. et al., “LEGO-Prover: Neural Theorem Proving with Growing Libraries.”Wang et al., LEGO-Prover: Neural Theorem Proving With Growing Libraries, ICLR 2024

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

23 (1) total: 36

LEGO-Prover (ICLR 2024)LEGO-Prover (ICLR 2024 – under review)

Wang et al., LEGO-Prover: Neural Theorem Proving With Growing Libraries, ICLR 2024

Credit to Zhengying Liu at Huawei Noah’s Ark Lab

23 (2) total: 36

DeepMind: solve IMO problems at a silver medalist level

24 total: 36

符号化知识表示的类型及其与大语言模型结合的方法

符号化知识表示的类型

自然语言与神经网络结合的方法

形式语言与神经网络结合的方法

图表语言与神经网络结合的方法

Content

知识图谱、语义网Semantic Web

▶ 在W3C推动下，语义网有一套比较完备的形式化语义描述体系，包括RDF、
Schema、Ontology、N-Tuples、SPARQL等，具备描述逻辑的表达能力

文因互联 保密信息41

知识图谱语言：RDF and OWL

知识图谱语言：RDF and OWL 文因互联 保密信息

W3C语义网技术栈（中文版）

W3C语义网技术栈

Slides: 鲍捷：从语义网到知识图谱——Web知识技术体系的变迁

25 total: 36

知识图谱技术金字塔

文因互联 保密信息

5
6

规则（Rule）

本体（Ontology）

模式（Schema）

图（Graph）

表格（Table）

标签（Label & Tag）

文本（Text）

浅层语义
分析

表格理解

知识抽取

本体学习

机
器
学
习

逻辑
知识

模式

实例

数据工程

非结构化数据

知识图谱
（知识工程）

结
构
化
数
据

图谱分析

56

知识图谱技术金字塔

Slides: 鲍捷：从语义网到知识图谱——Web知识技术体系的变迁

26 total: 36

知识图谱与神经网络的结合

▶ 语义网和知识图谱的大规模实践表明，逻辑形式的表示在实践中对语义的精确性要求
过于严格，不具备可行性

▶ 在实践中，知识图谱被大大简化，仅仅表示为三元组形式的实体图谱和事理图谱，以
及概念层次结构

▶ 简化后的三元组式的知识图谱（包括事理图谱）在搜索引擎和信息推荐等特定领域获
得了较广泛的应用

▶ 在通用领域，知识图谱仍然面临知识覆盖率太低的问题，特别是与大语言模型相比

▶ 自由文本知识图谱（Free-Text Knowledge Graph）允许对实体和关系采用任意自然语
言描述，可以一定程度上缓解知识图谱表达能力的不足，但依然很受限。

▶ 知识图谱与神经网络（大语言模型）结合的方式：
▶ 使用大语言模型自动生成知识图谱：准确率无法保障，覆盖率仍然不足；
▶ 把知识图谱转换成文本形式用于语言模型预训练：数据量被其他预训练数据淹没，效果有
限；

▶ 通过检索增强（RAG）方式实时查询知识图谱用于推理：可以有效提高推理准确性，减少
幻觉。

27 total: 36

GraphRAG

▶ 什么是GraphRAG？
▶ GraphRAG是一种基于知识图谱的检索增强技术。通过构建图模型的知识表达，
将实体和关系之间的联系用图的形式展示出来，然后利用大语言模型（LLM）进
行检索增强。

▶ GraphRAG的工作原理：
▶ 提取实体：从用户输入的查询中提取关键实体。
▶ 构建子图：根据提取的实体构建相关的子图，形成上下文。
▶ 生成答案：将构建好的子图输入大语言模型，生成答案。

▶ GraphRAG引起了较多的重视，取得了一定的成功。
资料来源：CSDN Blog: GraphRAG：知识图谱+大模型,作者：Python_金钱豹

28 total: 36

符号化知识表示的其他形式

▶ 除了自然语言、知识图谱、程序代码、逻辑命题之外，还存在很多其他的符号化表示
形式：
▶ 事件时间线
▶ 思维导图
▶ 表格
▶ 电路图
▶ 日历
▶ 建筑设计图
▶ 演示胶片
▶ 广告设计图
▶ ……

▶ 大量的各种符号化知识都存在于这些非正规的表示形式中，缺乏系统全面的梳理

▶ 其中部分图表可以转化为专业的描述语言（如电路图、设计图）

▶ 大量图表都无法表示成形式语言的描述，只能以图片形式保存

29 total: 36

图像（image）作为大语言模型和符号化知识的接口

▶ 相比语言，图像可以提供更多、更直观的信息：

设想一下，如果想用文字传达右图

的所有信息，应该如何表述？

▶ 如何表述金字塔的层次结构？

▶ 如何表述颜色深浅传达的信
息？

▶ 如何表述周边的文字标注和金
字塔层级的关系？

文因互联 保密信息

5
6

规则（Rule）

本体（Ontology）

模式（Schema）

图（Graph）

表格（Table）

标签（Label & Tag）

文本（Text）

浅层语义
分析

表格理解

知识抽取

本体学习

机
器
学
习

逻辑
知识

模式

实例

数据工程

非结构化数据

知识图谱
（知识工程）

结
构
化
数
据

图谱分析

56

知识图谱技术金字塔

▶ 直接把这种非规范的图表以图像形式输入到多模态大模型中，也是一种合理的
神经符号结合方法。

30 (1) total: 36

图像（image）作为大语言模型和符号化知识的接口

Glyce: Glyph-vectors for Chinese Character
Representations

Yuxian Meng*, Wei Wu*, Fei Wang*, Xiaoya Li*, Ping Nie, Fan Yin
Muyu Li, Qinghong Han, Xiaofei Sun and Jiwei Li

Shannon.AI
{yuxian meng, wei wu, fei wang, xiaoya li, ping nie, fan yin,
muyu li, qinghong han, xiaofei sun, jiwei li}@shannonai.com

Abstract

It is intuitive that NLP tasks for logographic languages like Chinese should benefit
from the use of the glyph information in those languages. However, due to the
lack of rich pictographic evidence in glyphs and the weak generalization ability of
standard computer vision models on character data, an effective way to utilize the
glyph information remains to be found.
In this paper, we address this gap by presenting Glyce, the glyph-vectors for
Chinese character representations. We make three major innovations: (1) We use
historical Chinese scripts (e.g., bronzeware script, seal script, traditional Chinese,
etc) to enrich the pictographic evidence in characters; (2) We design CNN structures
(called tianzege-CNN) tailored to Chinese character image processing; and (3)
We use image-classification as an auxiliary task in a multi-task learning setup to
increase the model’s ability to generalize.
We show that glyph-based models are able to consistently outperform word/char
ID-based models in a wide range of Chinese NLP tasks. We are able to set new state-
of-the-art results for a variety of Chinese NLP tasks, including tagging (NER, CWS,
POS), sentence pair classification, single sentence classification tasks, dependency
parsing, and semantic role labeling. For example, the proposed model achieves an
F1 score of 80.6 on the OntoNotes dataset of NER, +1.5 over BERT; it achieves an
almost perfect accuracy of 99.8% on the Fudan corpus for text classification. 1 2

1 Introduction

Chinese is a logographic language. The logograms of Chinese characters encode rich information of
their meanings. Therefore, it is intuitive that NLP tasks for Chinese should benefit from the use of
the glyph information. Taking into account logographic information should help semantic modeling.
Recent studies indirectly support this argument: Radical representations have proved to be useful
in a wide range of language understanding tasks [Shi et al., 2015, Li et al., 2015, Yin et al., 2016,
Sun et al., 2014, Shao et al., 2017]. Using the Wubi scheme — a Chinese character encoding method
that mimics the order of typing the sequence of radicals for a character on the computer keyboard
—- is reported to improve performances on Chinese-English machine translation [Tan et al., 2018].
Cao et al. [2018] gets down to units of greater granularity, and proposed stroke n-grams for character
modeling.

Recently, there have been some efforts applying CNN-based algorithms on the visual features of
characters. Unfortunately, they do not show consistent performance boosts [Liu et al., 2017, Zhang

1* indicates equal contribution.
2code is available at https://github.com/ShannonAI/glyce.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

ar
X

iv
:1

90
1.

10
12

5v
5

 [
cs

.C
L

]
 2

1
M

ay
 2

02
0

Figure 2: Combing glyph information with BERT.

denotes the starting value, λ1 ∈ [0, 1] denotes the decaying value. This means that the influence from
the image classification objective decreases as the training proceeds, with the intuitive explanation
being that at the early stage of training, we need more regulations from the image classification task.
Adding image classification as a training objective mimics the idea of multi-task learning.

2.4 Combing Glyph Information with BERT

The glyph embeddings can be directly output to downstream models such as RNNs, LSTMs, trans-
formers.

Since large scale pretraining systems using language models, such as BERT [Devlin et al., 2018],
ELMO [Peters et al., 2018] and GPT [Radford et al., 2018], have proved to be effective in a wide range
of NLP tasks, we explore the possibility of combining glyph embeddings with BERT embeddings.
Such a strategy will potentially endow the model with the advantage of both glyph evidence and
large-scale pretraining. The overview of the combination is shown in Figure 2. The model consists of
four layers: the BERT layer, the glyph layer, the Glyce-BERT layer and the task-specific output layer.

• BERT Layer Each input sentence S is concatenated with a special CLS token denoting the
start of the sentence, and a SEP token, denoting the end of the sentence. Given a pre-trained
BERT model, the embedding for each token of S is computed using BERT. We use the
output from the last layer of the BERT transformer to represent the current token.

• Glyph Layer the output glyph embeddings of S from tianzege-CNNs.
• Glyce-BERT layer Position embeddings are first added to the glyph embeddings. The

addition is then concatenated with BERT to obtain the full Glyce representations.
• Task-specific output layer Glyce representations are used to represent the token at that

position, similar as word embeddings or Elmo emebddings [Peters et al., 2018]. Contextual-
aware information has already been encoded in the BERT representation but not glyph
representations. We thus need additional context models to encode contextual-aware glyph
representations. Here, we choose multi-layer transformers [Vaswani et al., 2017]. The
output representations from transformers are used as inputs to the prediction layer. It is
worth noting that the representations the special CLS and SEP tokens are maintained at the
final task-specific embedding layer.

3 Tasks

In this section, we describe how glypg embeddings can be used for different NLP tasks. In the vanilla
version, glyph embeddings are simply treated as character embeddings, which are fed to models built
on top of the word-embedding layers, such as RNNs, CNNs or more sophisticated ones. If combined

4

Figure 3: Using Glyce-BERT model for different tasks.

with BERT, we need to specifically handle the integration between the glyph embeddings and the
pretrained embeddings from BERT in different scenarios, as will be discussed in order below:

Sequence Labeling Tasks Many Chinese NLP tasks, such as name entity recognition (NER),
Chinese word segmentation (CWS) and part speech tagging (POS), can be formalized as character-
level sequence labeling tasks, in which we need to predict a label for each character. For glyce-BERT
model, the embedding output from the task-specific layer (described in Section 2.4) is fed to the CRF
model for label predictions.

Single Sentence Classification For text classification tasks, a single label is to be predicted for the
entire sentence. In the BERT model, the representation for the CLS token in the final layer of BERT is
output to the softmax layer for prediction. We adopt the similar strategy, in which the representation
for the CLS token in the task-specific layer is fed to the softmax layer to predict labels.

Sentence Pair Classification For sentence pair classification task like SNIS [Bowman et al., 2015],
a model needs to handle the interaction between the two sentences and outputs a label for a pair of
sentences. In the BERT setting, a sentence pair (s1, s2) is concatenated with one CLS and two SEP
tokens, denoted by [CLS, s1, SEP, s2, SEP]. The concatenation is fed to the BERT model, and the
obtained CLS representation is then fed to the softmax layer for label prediction. We adopt the similar
strategy for Glyce-BERT, in which [CLS, s1, SEP, s2, SEP] is subsequently passed through the BERT
layer, Glyph layer, Glyce-BERT layer and the task-specific output layer. The CLS representation from
the task-specific output layer is fed to the softmax function for the final label prediction.

4 Experiments

To enable apples-to-apples comparison, we perform grid parameter search for both baselines and the
proposed model on the dev set. Tasks that we work on are described in order below.

4.1 Tagging

NER For the task of Chinese NER, we used the widely-used OntoNotes, MSRA, Weibo and resume
datasets. Since most datasets don’t have gold-standard segmentation, the task is normally treated
as a char-level tagging task: outputting an NER tag for each character. The currently most widely
used non-BERT model is Lattice-LSTMs [Yang et al., 2018, Zhang and Yang, 2018], achieving better
performances than CRF+LSTM [Ma and Hovy, 2016].

CWS : The task of Chinese word segmentation (CWS) is normally treated as a char-level tagging
problem. We used the widely-used PKU, MSR, CITYU and AS benchmarks from SIGHAN 2005
bake-off for evaluation.

5

Figure 1: Illustration of the Tianzege-CNN used in Glyce.

2 Glyce

2.1 Using Historical Scripts

As discussed in Section 1, pictographic information is heavily lost in the simplified Chinese script.
We thus propose using scripts from various time periods in history and also of different writing styles.
We collect the following major historical script with details shown in Table 1. Scripts from different
historical periods, which are usually very different in shape, help the model to integrate pictographic
evidence from various sources; Scripts of different writing styles help improve the model’s ability to
generalize. Both strategies are akin to widely-used data augmentation strategies in computer vision.

2.2 The Tianzige-CNN Structure for Glyce

Directly using deep CNNs He et al. [2016], Szegedy et al. [2016], Ma et al. [2018a] in our task
results in very poor performances because of (1) relatively smaller size of the character images:
the size of Imagenet images is usually at the scale of 800*600, while the size of Chinese character
images is significantly smaller, usually at the scale of 12*12; and (2) the lack of training examples:
classifications on the imageNet dataset utilizes tens of millions of different images. In contrast,
there are only about 10,000 distinct Chinese characters. To tackle these issues, we propose the
Tianzige-CNN structure, which is tailored to Chinese character modeling as illustrated in Figure 1.
Tianzige (田字格) is a traditional form of Chinese Calligraphy. It is a four-squared format (similar
to Chinese character田) for beginner to learn writing Chinese characters. The input image ximage
is first passed through a convolution layer with kernel size 5 and output channels 1024 to capture
lower level graphic features. Then a max-pooling of kernel size 4 is applied to the feature map which
reduces the resolution from 8× 8 to 2× 2, . This 2× 2 tianzige structure presents how radicals are
arranged in Chinese characters and also the order by which Chinese characters are written. Finally,
we apply group convolutions [Krizhevsky et al., 2012, Zhang et al., 2017] rather than conventional
convolutional operations to map tianzige grids to the final outputs . Group convolutional filters are
much smaller than their normal counterparts, and thus are less prone to overfitting. It is fairly easy to
adjust the model from single script to multiple scripts, which can be achieved by simply changing the
input from 2D (i.e., dfont × dfont) to 3D (i.e., dfont × dfont ×Nscript), where dfont denotes the font size
and Nscript the number of scripts we use.

2.3 Image Classification as an Auxiliary Objective

To further prevent overfitting, we use the task of image classification as an auxiliary training objective.
The glyph embedding himage from CNNs will be forwarded to an image classification objective to
predict its corresponding charID. Suppose the label of image x is z. The training objective for the
image classification task L(cls) is given as follows:

L(cls) = − log p(z|x)
= − log softmax(W × himage)

(1)

Let L(task) denote the task-specific objective for the task we need to tackle, e.g., language modeling,
word segmentation, etc. We linearly combine L(task) and L(cl), making the final objective training
function as follows:

L = (1− λ(t)) L(task) + λ(t)L(cls) (2)
where λ(t) controls the trade-off between the task-specific objective and the auxiliary image-
classification objective. λ is a function of the number of epochs t: λ(t) = λ0λ

t
1, where λ0 ∈ [0, 1]

3

CTB5
Model P R F
Shao et al. [2017] (Sig) 93.68 94.47 94.07
Shao et al. [2017] (Ens) 93.95 94.81 94.38
Lattice-LSTM 94.77 95.51 95.14
Glyce+Lattice-LSTM 95.49 95.72 95.61

(+0.47)
BERT 95.86 96.26 96.06
Glyce+BERT 96.50 96.74 96.61

(+0.55)
CTB6

Model P R F
Shao et al. [2017] (Sig) - - 90.81
Lattice-LSTM 92.00 90.86 91.43
Glyce+Lattice-LSTM 92.72 91.14 91.92

(+0.49)
BERT 94.91 94.63 94.77
Glyce+BERT 95.56 95.26 95.41

(+0.64)

CTB9
Model P R F
Shao et al. [2017] (Sig) 91.81 94.47 91.89
Shao et al. [2017] (Ens) 92.28 92.40 92.34
Lattice-LSTM 92.53 91.73 92.13
Lattice-LSTM+Glyce 92.28 92.85 92.38

(+0.25)
BERT 92.43 92.15 92.29
Glyce+BERT 93.49 92.84 93.15

(+0.86)
UD1

Model P R F
Shao et al. [2017] (Sig) 89.28 89.54 89.41
Shao et al. [2017] (Ens) 89.67 89.86 89.75
Lattice-LSTM 90.47 89.70 90.09
Lattice-LSTM+Glyce 91.57 90.19 90.87

(+0.78)
BERT 95.42 94.17 94.79
Glyce+BERT 96.19 96.10 96.14

(+1.35)

Table 4: Results for POS tasks.

The current non-BERT SOTA model is based on the bilateral multi-perspective matching model
(BiMPM) [Wang et al., 2017], which specifically tackles the subunit matching between sentences.
Glyph embeddings are incorporated into BiMPMs, forming the Glyce+BiMPM baseline. Results
regarding each model on different datasets are given in Table 5. As can be seen, BiPMP+Glyce
outperforms BiPMPs, achieving the best results among non-bert models. BERT outperforms all
non-BERT models, and BERT+Glyce performs the best, setting new SOTA results on all of the four
benchmarks.

BQ
Model P R F A
BiMPM 82.3 81.2 81.7 81.9
Glyce+BiMPM 81.9 85.5 83.7 83.3

(+2.0) (+1.4)
BERT 83.5 85.7 84.6 84.8
Glyce+BERT 84.2 86.9 85.5 85.8

(+0.9) (+1.0)
XNLI

Model P R F A
BiMPM - - - 67.5
Glyce+BiMPM - - - 67.7

(+0.2)
BERT - - - 78.4
Glyce+BERT - - - 79.2

(+0.8)

LCQMC
Model P R F A
BiMPM 77.6 93.9 85.0 83.4
Glyce+BiMPM 80.4 93.4 86.4 85.3

(+1.4) (+1.9)
BERT 83.2 94.2 88.2 87.5
Glyce+BERT 86.8 91.2 88.8 88.7

(+0.6) (+1.2)
NLPCC-DBQA

Model P R F A
BiMPM 78.8 56.5 65.8 -
Glyce+BiMPM 76.3 59.9 67.1 -

(+1.3) -
BERT 79.6 86.0 82.7 -
Glyce+BERT 81.1 85.8 83.4 -

(+0.7) -

Table 5: Results for sentence-pair classification tasks.

Model ChnSentiCorp the Fudan corpus iFeng
LSTM 91.7 95.8 84.9

LSTM + Glyce 93.1 96.3 85.8
(+ 1.4) (+0.5) (+0.9)

BERT 95.4 99.5 87.1
Glyce+BERT 95.9 99.8 87.5

(+0.5) (+0.3) (+0.4)

Table 6: Accuracies for Single Sentence Classification task.

7

Dependency Parsing
Model UAS LAS
Ballesteros et al. [2016] 87.7 86.2
Kiperwasser and Eliyahu [2016] 87.6 86.1
Cheng et al. [2016] 88.1 85.7
Biaffine 89.3 88.2

Biaffine+Glyce 90.2 89.0
(+0.9) (+0.8)

Semantic Role Labeling
Model P R F
Roth and Lapata [2016] 76.9 73.8 75.3
Marcheggiani and Diego [2017] 84.6 80.4 82.5
He et al. [2018] 84.2 81.5 82.8

k-order pruning+Glyce 85.4 82.1 83.7
(+0.8) (+0.6) (+0.9)

Table 7: Results for dependency parsing and SRL.

4.3 Single Sentence Classification

For single sentence/document classification, we need to output a label for a text sequence. The label
could be either a sentiment indicator or a news genre. Datasets that we use include: (1) ChnSentiCorp
(binary classification); (2) the Fudan corpus (5-class classification) [Li, 2011]; and (3) Ifeng (5-class
classification).

Results for different models on different tasks are shown in Table 6. We observe similar phenomenon
as before: Glyce+BERT achieves SOTA results on all of the datasets. Specifically, the Glyce+BERT
model achieves an almost perfect accuracy (99.8) on the Fudan corpus.

4.4 Dependency Parsing and Semantic Role Labeling

For dependency parsing [Chen and Manning, 2014, Dyer et al., 2015], we used the widely-used
Chinese Penn Treebank 5.1 dataset for evaluation. Our implementation uses the previous state-of-the-
art Deep Biaffine model Dozat and Manning [2016] as a backbone. We replaced the word vectors
from the biaffine model with Glyce-word embeddings, and exactly followed its model structure and
training/dev/test split criteria. We report scores for unlabeled attachment score (UAS) and labeled
attachment score (LAS). Results for previous models are copied from [Dozat and Manning, 2016,
Ballesteros et al., 2016, Cheng et al., 2016]. Glyce-word pushes SOTA performances up by +0.9 and
+0.8 in terms of UAS and LAS scores.

For the task of semantic role labeling (SRL) [Roth and Lapata, 2016, Marcheggiani and Diego, 2017,
He et al., 2018], we used the CoNLL-2009 shared-task. We used the current SOTA model, the k-order
pruning algorithm [He et al., 2018] as a backbone.4 We replaced word embeddings with Glyce
embeddings. Glyce outperforms the previous SOTA performance by 0.9 with respect to the F1 score,
achieving a new SOTA score of 83.7.

BERT does not perform competitively in these two tasks, and results are thus omitted.

5 Ablation Studies

In this section, we discuss the influence of different factors of the proposed model. We use the
LCQMC dataset of the sentence-pair prediction task for illustration. Factors that we discuss include
training strategy, model architecture, auxiliary image-classification objective, etc.

5.1 Training Strategy

This section talks about a training tactic (denoted by BERT-glyce-joint), in which given task-specific
supervisions, we first fine-tune the BERT model, then freeze BERT to fine-tune the glyph layer,
and finally jointly tune both layers until convergence. We compare this strategy with other tactics,
including (1) the Glyph-Joint strategy, in which BERT is not fine-tuned in the beginning: we first

4Code open sourced at https://github.com/bcmi220/srl_syn_pruning

8

30 (2) total: 36

图像（image）作为大语言模型和符号化知识的接口

Autoformalizing Euclidean Geometry

Logan Murphy 1 * Kaiyu Yang 2 * Jialiang Sun 1 Zhaoyu Li 1 Anima Anandkumar 2 Xujie Si 1

Abstract
Autoformalization involves automatically trans-
lating informal math into formal theorems and
proofs that are machine-verifiable. Euclidean ge-
ometry provides an interesting and controllable
domain for studying autoformalization. In this
paper, we introduce a neuro-symbolic framework
for autoformalizing Euclidean geometry, which
combines domain knowledge, SMT solvers, and
large language models (LLMs). One challenge in
Euclidean geometry is that informal proofs rely
on diagrams, leaving gaps in texts that are hard to
formalize. To address this issue, we use theorem
provers to fill in such diagrammatic information
automatically, so that the LLM only needs to aut-
oformalize the explicit textual steps, making it
easier for the model. We also provide automatic
semantic evaluation for autoformalized theorem
statements. We construct LeanEuclid, an auto-
formalization benchmark consisting of problems
from Euclid’s Elements and the UniGeo dataset
formalized in the Lean proof assistant. Experi-
ments with GPT-4 and GPT-4V show the capa-
bility and limitations of state-of-the-art LLMs on
autoformalizing geometry problems. The data
and code are available at https://github.
com/loganrjmurphy/LeanEuclid.

1. Introduction
Euclidean geometry is one of the oldest branches of mathe-
matics. It has served as a test of human intelligence for more
than two millennia and has recently been used to test AI.
Substantial work has focused on solving geometry problems
automatically (Wu, 2008), e.g., AlphaGeometry (Trinh et al.,
2023) can solve some of the IMO geometry problems. These
methods consume problems and produce solutions in struc-
tured formats. In this work, we address a complementary

*Equal contribution 1University of Toronto 2Caltech. Corre-
spondence to: Logan Murphy <lmurphy@cs.toronto.edu>, Kaiyu
Yang <kaiyuy@caltech.edu>, Xujie Si <six@cs.toronto.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

task, autoformalization: Can AI understand human-written
problems/solutions and translate them automatically into for-
mal theorems/proofs? Specifically, we focus on the setting
where formal theorems/proofs can be verified by the Lean
proof assistant (de Moura & Ullrich, 2021). Lean provides
a language for writing formal proofs. It is popular among
mathematicians and has a growing ecosystem of integration
with large language models (LLMs), e.g., LeanDojo (Yang
et al., 2023) and Lean Copilot (Song et al., 2024).

We demonstrate that Euclidean geometry provides an inter-
esting and controllable domain for autoformalization. First,
an automatic evaluation of autoformalized theorems is diffi-
cult in general but feasible in Euclidean geometry. Second,
the logical gaps in informal proofs are well understood in
Euclidean geometry, making it easier to faithfully formalize
the proofs. Third, combining text-based and diagrammatic
reasoning makes Euclidean geometry a natural domain to
study multimodal reasoning models. Therefore, autoformal-
izing Euclidean geometry is an attractive target for AI.

Evaluating Autoformalized Theorem Statements. De-
spite the promise of machine learning and LLMs in autofor-
malizing theorems (Wu et al., 2022), a major roadblock is
the lack of reliable and automatic evaluation. Comparing
the model output verbatim with ground truth would be too
rigid since there are many valid ways to formalize a theorem.
Checking the logical equivalence between two theorems is
generally intractable. Researchers have resorted to proxy
metrics such as the BLEU score (Papineni et al., 2002).
However, LLMs can score high on such metrics without
generating correct formalization (Jiang et al., 2023b). Al-
ternatively, human evaluation is widely used as a last resort,
but it is costly, especially if we want to use the results to
improve the method iteratively.

Our Approach to Evaluating Autoformalization. To
overcome the evaluation bottleneck, we introduce a new
automatic approach for evaluating the semantics of auto-
formalized theorems. The key insight is that equivalence
checking can be made feasible in specific domains (such as
Euclidean geometry) by combining domain knowledge with
automated reasoning tools, such as satisfiability modulo
theories (SMT) solvers (Barrett & Tinelli, 2018).

To evaluate the autoformalized theorems, we develop a sym-

1

ar
X

iv
:2

40
5.

17
21

6v
1

 [
cs

.L
G

]
 2

7
M

ay
 2

02
4

Autoformalizing Euclidean Geometry

Informal Euclidean geometry problem

Equivalent?

Autoformalized proof

Autoformalized theorem

Ground truth theorem

a b : Point
AB : Line
BCD ACE : Circle
isCenter a BCD
onCircle b BCD
isCenter b ACE
onCircle a ACE
⊢ intersects BCD ACE

Diagrammatic reasoning gaps

…
⊢ …

…

SMT-based symbolic
reasoning engine

…

Figure 1. Left: Proposition 1 in Euclid’s Elements (Book I). The orange text involves diagrammatic reasoning: Euclid did not explicitly
prove the two circles actually intersect, but the reader can use the diagram to implicitly fill in the logical gap. Top right: The model
autoformalizes the problem into a formal theorem (proposition 1’), which is evaluated by checking its logical equivalence with the
ground truth (proposition 1), leveraging domain knowledge and a symbolic automated reasoning engine based on SMT (satisfiability
modulo theories) solvers. Bottom right: A proof autoformalized by the model. Like Euclid’s proofs, it does not need to handle
diagrammatic reasoning explicitly. Lean can check the proof to identify a list of diagrammatic reasoning gaps, e.g., “intersects BCD
ACE”. Then, it attempts to fill in all gaps automatically using the symbolic reasoning engine based on SMT solvers.

bolic reasoning engine based on SMT solvers. As Fig. 1
(Top right) shows, given a ground-truth formal theorem Tgt

and the autoformalized theorem Tpred produced by a lan-
guage model, we use the symbolic engine to try to prove
their equivalence (Tgt ⇔ Tpred). If successful, their logi-
cal gap is small enough to conclude that Tpred is correct.
Even if the symbolic engine cannot prove Tgt ⇔ Tpred, it
can provide partial results useful for a more fine-grained
analysis. We validate this evaluation protocol by showing it
correlates well with human evaluation.

LeanEuclid: Formalizing Proofs and Diagrams. We
construct LeanEuclid, a benchmark for testing machine
learning on autoformalizing Euclidean geometry. As in Fig 1
(Left), each example in LeanEuclid has an informal theorem,
proof, and diagram in LATEX, as well as a formal theorem
and proof in Lean. Data examples in LeanEuclid are manu-
ally formalized into Lean from Euclid’s Elements (Heiberg,
2007) and the UniGeo dataset (Chen et al., 2022).

LeanEuclid serves as a benchmark for autoformalizing not
only theorems but also proofs. Geometric proofs are chal-
lenging to formalize faithfully. Humans (ancient or modern,
including Euclid himself) use diagrams to license proof
steps without making every detail explicit. Fig. 1 shows an
example of diagrammatic reasoning from Euclid’s Elements.

Euclid uses the intersection of two circles (C) without prov-
ing its existence. Most readers would not find the proof
problematic, as the two circles intersect in the diagram.
Such implicit diagrammatic reasoning is ubiquitous in in-
formal geometric proofs but needs to be handled explicitly
in formal proofs (Beeson et al., 2019). Therefore, a naive
attempt to autoformalize the proofs would be difficult, as it
requires the model to fill in many diagrammatic reasoning
gaps, with nothing to reference in the informal texts.

To mitigate diagrammatic gaps, LeanEuclid adopts a for-
mal system named E (Avigad et al., 2009), introduced by
philosophers for modeling diagrammatic reasoning in Eu-
clid’s Elements. It teases out a set of diagrammatic rules
so that diagrammatic reasoning can be modeled as logical
deductions. We implement E in Lean and provide proof
automation to fill in diagrammatic reasoning gaps, using the
same symbolic reasoning engine developed for equivalence
checking. Our system enables formalizing all 48 theorems
and proofs from Elements (Book I), following Euclid’s orig-
inal proofs as closely as possible, with diagrammatic reason-
ing carried out implicitly and automatically (see Fig. 1). The
data is included in LeanEuclid, making autoformalizing Eu-
clid’s proofs feasible. The language model now only needs
to autoformalize the explicit textual proof steps, leaving the
“obvious” implicit reasoning to the symbolic engine.

2

Autoformalizing Euclidean Geometry

Why is Formalizing Theorem Statements Hard? Com-
pared to previous autoformalization results (Wu et al., 2022),
our experiments show that the models struggle to correctly
formalize most of the theorems in our dataset. We suspect
this is primarily a result of using the formal system E as a
specification language. E is designed primarily as a proof
system, and not as a specification language; as noted by
Avigad, many basic relation constructs in E (e.g., between,
sameSide) are almost never mentioned explicitly in Eu-
clid’s actual writing (Avigad et al., 2009). Furthermore,
the language can only refer to composite structures (angles,
triangles, etc.) in terms of their atomic components (points,
lines, etc.). This makes theorem statements in E relatively
verbose, and this verbosity introduces more room for the
model to make small mistakes.

In summary, while state-of-the-art models struggle to suc-
cessfully autoformalize many of the theorems in our dataset,
we see that E3 can successfully identify and quantify the
correctness of autoformalized theorem statements; in partic-
ular, despite being incomplete by design, E3 only produces
a small number of false negatives. We believe that E3 can
significantly facilitate the training and validation of autofor-
malization models targeting Euclidean geometry. Moreover,
we believe that similar tools can be developed for other
domains if an appropriate formal theory can be defined.

5.2. Autoformalizing Proofs

To check whether LeanEuclid is a suitable target for auto-
formalizing proofs, we attempted to autoformalize proofs
from Elements and UniGeo using GPT-4 and GPT-4V.

Experimental Setup. We tested each model against 43
proofs from Elements and 100 proofs from UniGeo. To
demonstrate concretely the capabilities and limitations of the
model in writing formal LeanEuclid proofs, we attempted
to formalize entire proofs from single queries, rather than
using an iterative or search-based autoformalization proce-
dure. We evaluated the formalized UniGeo proofs based
on whether it is verified by Lean as-is, and experimented
with 0-shot, 1-shot, and 5-shot prompts. The proofs from
Elements are more complex, so we did not anticipate many
proofs to be completely correct. Instead, we measured how
much effort is required to repair the autoformalized proofs
into proofs that are accepted by Lean.

We manually repaired each incorrectly autoformalized proof
from Elements, attempting to make as few alterations as re-
quired. Using our ground truth proof as a reference point,
we modified invalid tactics that could be repaired (e.g., by
rearranging the order of its arguments), added missing tac-
tics, and removed tactics that could not easily be repaired.
Unnecessary but valid tactics were left unchanged.

GPT-4 GPT-4V
Category 1-shot 5-shot 1-shot 5-shot

Triangle 35% 45% 45% 70%
Similarity 5% 15% 10% 15%
Congruent 5% 25% 15% 25%

Quadrilateral 35% 25% 20% 30%
Parallel 5% 15% 5% 15%

Overall 17% 25% 19% 31%

Table 2. Percentage of successfully autoformalized
proofs from UniGeo. Experiments were conducted
in January 2024 using gpt-4-1106-preview and
gpt-4-1106-vision-preview.

Results. Table 2 shows the results of autoformalizing
proofs from UniGeo proofs. Models with 0-shot prompts are
not included since they failed to autoformalize any proofs.
In general, the performance of the models significantly de-
pends on the type of geometry problems and the number of
few-shot demonstrations. Compared to theorem statements,
we see a more significant improvement in the success rate
when visual inputs are provided for autoformalizing proofs.

When autoformalizing proofs from Elements with 5-shot
prompts, we found that GPT-4 and GPT-4V were both only
able to completely formalize the same two proofs (Proposi-
tions 1 and Proposition 17). That is to say, when combined
with the UniGeo results, GPT-4 formalized correct proofs
at a rate of 18.8% on LeanEuclid, while GPT-4V achieved
a rate of 23.1%. The remaining 41 proofs from Elements
required some degree of repair to be accepted by Lean.

While it is difficult to precisely measure the quality of imper-
fect proofs, we can gain a rough approximation by comput-
ing the Levenshtein ratio between the original and repaired
proofs. Doing so reveals that, for GPT-4, the autoformalized
proofs had a median similarity ratio of 61.7% compared to
their repaired versions, with proofs in the 75th percentile
scoring at least 75.2%. For GPT-4V, the median similarity
ratio was 64.0%, and the proofs in the 75h percentile proofs
scored at least 72.9%. Moreover, we found that many of the
modifications required to repair the proofs are very simple,
such as strengthening a theorem slightly or rearranging tac-
tics arguments; in general, the models are good at choosing
relevant theorems, even if they do not invoke them correctly.
Additional data and examples are in Appendix F.

We believe that these results reflect well on LeanEuclid as
a target language for autoformalizing Euclidean proofs. In
particular, our tactic language and proof automation allow
the model to focus only on explicit reasoning steps in the
input text. This means the resulting proofs are much shorter
than they would be if all reasoning steps were made explicit
(and, as a result, they are easier to repair). Given that these
results were obtained from standalone queries, we expect

8

30 (3) total: 36

LayoutGPT

LayoutGPT: Compositional Visual Planning and
Generation with Large Language Models

Weixi Feng1˚ Wanrong Zhu1˚ Tsu-jui Fu1 Varun Jampani2 Arjun Akula2
Xuehai He3 Sugato Basu2 Xin Eric Wang3 William Yang Wang1

1University of California, Santa Barbara
2Google

3University of California, Santa Cruz
https://github.com/weixi-feng/LayoutGPT

[2D Spatial Reasoning] A carrot and some onion next to
a knife on a cutting board.

[2D Numerical Reasoning] There are three elephants
standing beside a pool of water.

LayoutGPT
+ GLIGEN

StableDiffusion
(v2.1)

Attend-and-
Excite

[3D Living Room] Room Type: Living Room;
 Room Size: 7.7m x 3.6m

LayoutGPTATISS

[3D Bedroom] Room Type: Bedroom;
 Room Size: 3.0m x 4.8m

LayoutGPTATISS

Furnitures
Overlapped

Furnitures
Out-of-Boundary

LayoutGPT
+ GLIGEN

StableDiffusion
(v2.1)

Attend-and-
Excite

Figure 1: Generated layouts from LayoutGPT in 2D images and 3D indoor scenes. LayoutGPT can
serve as a visual planner to reflect challenging numerical and spatial concepts in visual spaces.

Abstract

Attaining a high degree of user controllability in visual generation often requires
intricate, fine-grained inputs like layouts. However, such inputs impose a substan-
tial burden on users when compared to simple text inputs. To address the issue,
we study how Large Language Models (LLMs) can serve as visual planners by
generating layouts from text conditions, and thus collaborate with visual gener-
ative models. We propose LayoutGPT, a method to compose in-context visual
demonstrations in style sheet language to enhance the visual planning skills of
LLMs. LayoutGPT can generate plausible layouts in multiple domains, ranging
from 2D images to 3D indoor scenes. LayoutGPT also shows superior performance
in converting challenging language concepts like numerical and spatial relations to
layout arrangements for faithful text-to-image generation. When combined with
a downstream image generation model, LayoutGPT outperforms text-to-image
models/systems by 20-40% and achieves comparable performance as human users
in designing visual layouts for numerical and spatial correctness. Lastly, Layout-
GPT achieves comparable performance to supervised methods in 3D indoor scene
synthesis, demonstrating its effectiveness and potential in multiple visual domains.

˚equal contribution, correspondence to {weixifeng, wanrongzhu}@cs.ucsb.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

ar
X

iv
:2

30
5.

15
39

3v
2

 [
cs

.C
V

]
 2

8
O

ct
 2

02
3

LayoutGPTLayoutGPT: Compositional Visual Planning and Generation with LLMs, arXiv:2305.15393v2

31 total: 36

图（Graph）作为大语言模型和符号化知识的接口

ERNIE: Enhanced Language Representation with Informative Entities

Zhengyan Zhang1,2,3∗, Xu Han1,2,3∗, Zhiyuan Liu1,2,3†, Xin Jiang4, Maosong Sun1,2,3, Qun Liu4

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Institute for Artificial Intelligence, Tsinghua University, Beijing, China

3State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China
4Huawei Noah’s Ark Lab

{zhangzhengyan14,hanxu17}@mails.tsinghua.edu.cn

Abstract

Neural language representation models such
as BERT pre-trained on large-scale corpora
can well capture rich semantic patterns from
plain text, and be fine-tuned to consistently im-
prove the performance of various NLP tasks.
However, the existing pre-trained language
models rarely consider incorporating knowl-
edge graphs (KGs), which can provide rich
structured knowledge facts for better language
understanding. We argue that informative en-
tities in KGs can enhance language represen-
tation with external knowledge. In this pa-
per, we utilize both large-scale textual cor-
pora and KGs to train an enhanced language
representation model (ERNIE), which can
take full advantage of lexical, syntactic, and
knowledge information simultaneously. The
experimental results have demonstrated that
ERNIE achieves significant improvements on
various knowledge-driven tasks, and mean-
while is comparable with the state-of-the-art
model BERT on other common NLP tasks.
The source code and experiment details of
this paper can be obtained from https://
github.com/thunlp/ERNIE.

1 Introduction

Pre-trained language representation models, in-
cluding feature-based (Mikolov et al., 2013; Pen-
nington et al., 2014; Peters et al., 2017, 2018) and
fine-tuning (Dai and Le, 2015; Howard and Ruder,
2018; Radford et al., 2018; Devlin et al., 2019)
approaches, can capture rich language informa-
tion from text and then benefit many NLP appli-
cations. BERT (Devlin et al., 2019), as one of the
most recently proposed models, obtains the state-
of-the-art results on various NLP applications by
simple fine-tuning, including named entity recog-
nition (Sang and De Meulder, 2003), question

∗ indicates equal contribution
† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

is_ais_a

Song Book
auth

or
composer

Bob Dylan

Chronicles:
Volume OneBlowin’ in the wind

Songwriter Writer

is_ais_a

Bob Dylan wrote Blowin’ in the Wind in 1962, and wrote Chronicles: Volume One in 2004.

Figure 1: An example of incorporating extra
knowledge information for language understand-
ing. The solid lines present the existing knowl-
edge facts. The red dotted lines present the facts
extracted from the sentence in red. The green dot-
dash lines present the facts extracted from the sen-
tence in green.

answering (Rajpurkar et al., 2016; Zellers et al.,
2018), natural language inference (Bowman et al.,
2015), and text classification (Wang et al., 2018).

Although pre-trained language representation
models have achieved promising results and
worked as a routine component in many NLP
tasks, they neglect to incorporate knowledge in-
formation for language understanding. As shown
in Figure 1, without knowing Blowin’ in the Wind
and Chronicles: Volume One are song and book
respectively, it is difficult to recognize the two oc-
cupations of Bob Dylan, i.e., songwriter and
writer, on the entity typing task. Furthermore,
it is nearly impossible to extract the fine-grained
relations, such as composer and author on
the relation classification task. For the existing
pre-trained language representation models, these
two sentences are syntactically ambiguous, like
“UNK wrote UNK in UNK”. Hence, considering
rich knowledge information can lead to better lan-
guage understanding and accordingly benefits var-
ious knowledge-driven applications, e.g. entity
typing and relation classification.

For incorporating external knowledge into lan-
guage representation models, there are two main

ar
X

iv
:1

90
5.

07
12

9v
3

 [
cs

.C
L

]
 4

 J
un

 2
01

9

ERNIE: Enhanced Language Representation with Informative Entities

Zhengyan Zhang1,2,3∗, Xu Han1,2,3∗, Zhiyuan Liu1,2,3†, Xin Jiang4, Maosong Sun1,2,3, Qun Liu4

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Institute for Artificial Intelligence, Tsinghua University, Beijing, China

3State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China
4Huawei Noah’s Ark Lab

{zhangzhengyan14,hanxu17}@mails.tsinghua.edu.cn

Abstract

Neural language representation models such
as BERT pre-trained on large-scale corpora
can well capture rich semantic patterns from
plain text, and be fine-tuned to consistently im-
prove the performance of various NLP tasks.
However, the existing pre-trained language
models rarely consider incorporating knowl-
edge graphs (KGs), which can provide rich
structured knowledge facts for better language
understanding. We argue that informative en-
tities in KGs can enhance language represen-
tation with external knowledge. In this pa-
per, we utilize both large-scale textual cor-
pora and KGs to train an enhanced language
representation model (ERNIE), which can
take full advantage of lexical, syntactic, and
knowledge information simultaneously. The
experimental results have demonstrated that
ERNIE achieves significant improvements on
various knowledge-driven tasks, and mean-
while is comparable with the state-of-the-art
model BERT on other common NLP tasks.
The source code and experiment details of
this paper can be obtained from https://
github.com/thunlp/ERNIE.

1 Introduction

Pre-trained language representation models, in-
cluding feature-based (Mikolov et al., 2013; Pen-
nington et al., 2014; Peters et al., 2017, 2018) and
fine-tuning (Dai and Le, 2015; Howard and Ruder,
2018; Radford et al., 2018; Devlin et al., 2019)
approaches, can capture rich language informa-
tion from text and then benefit many NLP appli-
cations. BERT (Devlin et al., 2019), as one of the
most recently proposed models, obtains the state-
of-the-art results on various NLP applications by
simple fine-tuning, including named entity recog-
nition (Sang and De Meulder, 2003), question

∗ indicates equal contribution
† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

is_ais_a

Song Book
auth

or
composer

Bob Dylan

Chronicles:
Volume OneBlowin’ in the wind

Songwriter Writer

is_ais_a

Bob Dylan wrote Blowin’ in the Wind in 1962, and wrote Chronicles: Volume One in 2004.

Figure 1: An example of incorporating extra
knowledge information for language understand-
ing. The solid lines present the existing knowl-
edge facts. The red dotted lines present the facts
extracted from the sentence in red. The green dot-
dash lines present the facts extracted from the sen-
tence in green.

answering (Rajpurkar et al., 2016; Zellers et al.,
2018), natural language inference (Bowman et al.,
2015), and text classification (Wang et al., 2018).

Although pre-trained language representation
models have achieved promising results and
worked as a routine component in many NLP
tasks, they neglect to incorporate knowledge in-
formation for language understanding. As shown
in Figure 1, without knowing Blowin’ in the Wind
and Chronicles: Volume One are song and book
respectively, it is difficult to recognize the two oc-
cupations of Bob Dylan, i.e., songwriter and
writer, on the entity typing task. Furthermore,
it is nearly impossible to extract the fine-grained
relations, such as composer and author on
the relation classification task. For the existing
pre-trained language representation models, these
two sentences are syntactically ambiguous, like
“UNK wrote UNK in UNK”. Hence, considering
rich knowledge information can lead to better lan-
guage understanding and accordingly benefits var-
ious knowledge-driven applications, e.g. entity
typing and relation classification.

For incorporating external knowledge into lan-
guage representation models, there are two main

ar
X

iv
:1

90
5.

07
12

9v
3

 [
cs

.C
L

]
 4

 J
un

 2
01

9

e
(i�1)
1 e

(i�1)
2

bob dylan wrote

w
(i�1)
1 w

(i�1)
2 w

(i�1)
3 ··· w(i�1)

n

1962

Multi-Head Attention Multi-Head Attention

Information Fusion

w
(i)
1 w

(i)
2

e
(i)
1

w(i)
n

e
(i)
2

w
(i)
3 e

(i)
1 e

(i)
2

ẽ
(i)
1 ẽ

(i)
2

w̃
(i)
1 w̃

(i)
2 w̃

(i)
3 w̃(i)

n

···

···
ẽ
(i)
2

Token Input Entity Input

Token Output Entity Output

Bob Dylan wrote Blowin’ in the Wind in 1962

blow

w
(i�1)
4

w̃
(i)
4

w
(i)
4

Multi-Head
Attention

Feed
Forward

Nx

Multi-Head
Attention

Information
Fusion

Token Input

Multi-Head
Attention

Entity Input

Mx

Token Output Entity Output

Blowin’ in the Wind

ẽ
(i)
1

Bob Dylan

Aggregator

Transformer

Aggregator

(a) Model Achitecture (b) Aggregator

K-Encoder

T-Encoder

Figure 2: The left part is the architecture of ERNIE. The right part is the aggregator for the mutual
integration of the input of tokens and entities. Information fusion layer takes two kinds of input: one is the
token embedding, and the other one is the concatenation of the token embedding and entity embedding.
After information fusion, it outputs new token embeddings and entity embeddings for the next layer.

inference (Chen et al., 2018), knowledge ac-
quisition (Han et al., 2018a), and dialog sys-
tems (Madotto et al., 2018). Hence, we argue that
extra knowledge information can effectively ben-
efit existing pre-training models. In fact, some
work has attempted to joint representation learn-
ing of words and entities for effectively lever-
aging external KGs and achieved promising re-
sults (Wang et al., 2014; Toutanova et al., 2015;
Han et al., 2016; Yamada et al., 2016; Cao et al.,
2017, 2018). Sun et al. (2019) propose the knowl-
edge masking strategy for masked language model
to enhance language representation by knowl-
edge 1. In this paper, we further utilize both cor-
pora and KGs to train an enhanced language rep-
resentation model based on BERT.

3 Methodology

In this section, we present the overall framework
of ERNIE and its detailed implementation, includ-
ing the model architecture in Section 3.2, the novel
pre-training task designed for encoding informa-
tive entities and fusing heterogeneous information
in Section 3.4, and the details of the fine-tuning
procedure in Section 3.5.

1It is a coincidence that both Sun et al. (2019) and we
chose ERNIE as the model names, which follows the inter-
esting naming habits like ELMo and BERT. Sun et al. (2019)
released their code on March 16th and submitted their paper
to Arxiv on April 19th while we submitted our paper to ACL
whose deadline is March 4th.

3.1 Notations

We denote a token sequence as {w1, . . . , wn} 2,
where n is the length of the token sequence.
Meanwhile, we denote the entity sequence align-
ing to the given tokens as {e1, . . . , em}, where m
is the length of the entity sequence. Note that m
is not equal to n in most cases, as not every to-
ken can be aligned to an entity in KGs. Further-
more, we denote the whole vocabulary containing
all tokens as V , and the entity list containing all
entities in KGs as E . If a token w ∈ V has a corre-
sponding entity e ∈ E , their alignment is defined
as f(w) = e. In this paper, we align an entity to
the first token in its named entity phrase, as shown
in Figure 2.

3.2 Model Architecture

As shown in Figure 2, the whole model architec-
ture of ERNIE consists of two stacked modules:
(1) the underlying textual encoder (T-Encoder)
responsible to capture basic lexical and syntac-
tic information from the input tokens, and (2) the
upper knowledgeable encoder (K-Encoder) re-
sponsible to integrate extra token-oriented knowl-
edge information into textual information from the
underlying layer, so that we can represent hetero-
geneous information of tokens and entities into a
united feature space. Besides, we denote the num-
ber of T-Encoder layers as N , and the number

2In this paper, tokens are at the subword level.

Model MNLI-(m/mm) QQP QNLI SST-2
392k 363k 104k 67k

BERTBASE 84.6/83.4 71.2 - 93.5

ERNIE 84.0/83.2 71.2 91.3 93.5

Model CoLA STS-B MRPC RTE
8.5k 5.7k 3.5k 2.5k

BERTBASE 52.1 85.8 88.9 66.4

ERNIE 52.3 83.2 88.2 68.8

Table 6: Results of BERT and ERNIE on different tasks
of GLUE (%).

As FewRel does not have any null instance
where there is not any relation between entities,
we adopt macro averaged metrics to present the
model performances. Since FewRel is built by
checking whether the sentences contain facts in
Wikidata, we drop the related facts in KGs be-
fore pre-training for fair comparison. From Ta-
ble 5, we have two observations: (1) As the train-
ing data does not have enough instances to train
the CNN encoder from scratch, CNN just achieves
an F1 score of 69.35%. However, the pre-training
models including BERT and ERNIE increase the
F1 score by at least 15%. (2) ERNIE achieves an
absolute F1 increase of 3.4% over BERT, which
means fusing external knowledge is very effective.

In TACRED, there are nearly 80% null
instances so that we follow the previous
work (Zhang et al., 2017) to adopt micro
averaged metrics to represent the model per-
formances instead of the macro. The results of
CNN, PA-LSTM, and C-GCN come from the
paper by Zhang et al. (2018), which are the best
results of CNN, RNN, and GCN respectively.
From Table 5, we observe that: (1) The C-GCN
model outperforms the strong BERT model by
an F1 increase of 0.4%, as C-GCN utilizes the
dependency trees and the entity mask strategy.
The entity mask strategy refers to replacing each
subject (and object similarly) entity with a special
NER token, which is similar to our proposed
pre-training task dEA. (2) ERNIE achieves the
best recall and F1 scores, and increases the F1
of BERT by nearly 2.0%, which proves the
effectiveness of the knowledgeable module for
relation classification.

In conclusion, we find that the pre-trained lan-
guage models can provide more information for
relation classification than the vanilla encoder
CNN and RNN. And ERNIE outperforms BERT
on both of the relation classification datasets, es-
pecially on the FewRel which has a much smaller

Model P R F1

BERT 85.05 85.11 84.89

ERNIE 88.49 88.44 88.32
w/o entities 85.89 85.89 85.79
w/o dEA 85.85 85.75 85.62

Table 7: Ablation study on FewRel (%).

training set. It demonstrates extra knowledge
helps the model make full use of small training
data, which is important for most NLP tasks as
large-scale annotated data is unavailable.

4.5 GLUE

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018) is a col-
lection of diverse natural language understanding
tasks (Warstadt et al., 2018; Socher et al., 2013;
Dolan and Brockett, 2005; Agirre et al., 2007;
Williams et al., 2018; Rajpurkar et al., 2016; Da-
gan et al., 2006; Levesque et al., 2011), which is
the main benchmark used in Devlin et al. (2019).
To explore whether our knowledgeable module
degenerates the performance on common NLP
tasks, we evaluate ERNIE on 8 datasets of GLUE
and compare it with BERT.

In Table 6, we report the results of our eval-
uation submissions and those of BERT from the
leaderboard. We notice that ERNIE is consistent
with BERTBASE on big datasets like MNLI, QQP,
QNLI, and SST-2. The results become more unsta-
ble on small datasets, that is, ERNIE is better on
CoLA and RTE, but worse on STS-B and MRPC.

In short, ERNIE achieves comparable results
with BERTBASE on GLUE. On the one hand, it
means GLUE does not require external knowledge
for language representation. On the other hand, it
illustrates ERNIE does not lose the textual infor-
mation after heterogeneous information fusion.

4.6 Ablation Study

In this subsection, we explore the effects of the
informative entities and the knowledgeable pre-
training task (dEA) for ERNIE using FewRel
dataset. w/o entities and w/o dEA refer to fine-
tuning ERNIE without entity sequence input and
the pre-training task dEA respectively. As shown
in Table 7, we have the following observations:
(1) Without entity sequence input, dEA still in-
jects knowledge information into language repre-
sentation during pre-training, which increases the
F1 score of BERT by 0.9%. (2) Although the in-
formative entities bring much knowledge informa-

32 (1) total: 36

图（Graph）作为大语言模型和符号化知识的接口

▶ 早期，将预训练语言模型和知识图谱嵌入表示（如TransE）相结合的做法，曾
经引起了较多的关注。

▶ 在大模型时代，这样的研究已经很少见。

▶ 但我认为，这样的研究也许仍然是有价值的，比如对于Reverse Curse问题，
也许是个可行的解决方案。

Published as a conference paper at ICLR 2024

THE REVERSAL CURSE:
LLMS TRAINED ON “A IS B” FAIL TO LEARN “B IS A”

Lukas Berglund
Vanderbilt University

Meg Tong
Independent

Max Kaufmann
UK AI Safety Institute

Mikita Balesni
Apollo Research

Asa Cooper Stickland
New York University

Tomasz Korbak
University of Sussex

Owain Evans∗
University of Oxford

ABSTRACT

We expose a surprising failure of generalization in auto-regressive large language
models (LLMs). If a model is trained on a sentence of the form “A is B”, it will
not automatically generalize to the reverse direction “B is A”. This is the Reversal
Curse. For instance, if a model is trained on “Valentina Tereshkova was the first
woman to travel to space”, it will not automatically be able to answer the question,
“Who was the first woman to travel to space?”. Moreover, the likelihood of the
correct answer (“Valentina Tershkova”) will not be higher than for a random name.
Thus, models do not generalize a prevalent pattern in their training set: if “A is B”
occurs, “B is A” is more likely to occur. It is worth noting, however, that if “A is B”
appears in-context, models can deduce the reverse relationship.

We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1
on fictitious statements such as “Uriah Hawthorne is the composer of Abyssal
Melodies” and showing that they fail to correctly answer “Who composed Abyssal
Melodies?”. The Reversal Curse is robust across model sizes and model families
and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-
3.5 and GPT-4) on questions about real-world celebrities, such as “Who is Tom
Cruise’s mother? [A: Mary Lee Pfeiffer]” and the reverse “Who is Mary Lee
Pfeiffer’s son?”. GPT-4 correctly answers questions like the former 79% of the
time, compared to 33% for the latter.

Code available at: https://github.com/lukasberglund/reversal_
curse.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer”) do not automatically infer “B is A”.

1 INTRODUCTION

If a human learns the fact “Valentina Tereshkova was the first woman to travel to space”, they can
also correctly answer “Who was the first woman to travel to space?”. This is such a basic form
of generalization that it seems trivial. Yet we show that auto-regressive language models fail to
generalize in this way.

∗Corresponding author: owaine@gmail.com

1

ar
X

iv
:2

30
9.

12
28

8v
4

 [
cs

.C
L

]
 2

6
M

ay
 2

02
4

Published as a conference paper at ICLR 2024

THE REVERSAL CURSE:
LLMS TRAINED ON “A IS B” FAIL TO LEARN “B IS A”

Lukas Berglund
Vanderbilt University

Meg Tong
Independent

Max Kaufmann
UK AI Safety Institute

Mikita Balesni
Apollo Research

Asa Cooper Stickland
New York University

Tomasz Korbak
University of Sussex

Owain Evans∗
University of Oxford

ABSTRACT

We expose a surprising failure of generalization in auto-regressive large language
models (LLMs). If a model is trained on a sentence of the form “A is B”, it will
not automatically generalize to the reverse direction “B is A”. This is the Reversal
Curse. For instance, if a model is trained on “Valentina Tereshkova was the first
woman to travel to space”, it will not automatically be able to answer the question,
“Who was the first woman to travel to space?”. Moreover, the likelihood of the
correct answer (“Valentina Tershkova”) will not be higher than for a random name.
Thus, models do not generalize a prevalent pattern in their training set: if “A is B”
occurs, “B is A” is more likely to occur. It is worth noting, however, that if “A is B”
appears in-context, models can deduce the reverse relationship.

We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1
on fictitious statements such as “Uriah Hawthorne is the composer of Abyssal
Melodies” and showing that they fail to correctly answer “Who composed Abyssal
Melodies?”. The Reversal Curse is robust across model sizes and model families
and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-
3.5 and GPT-4) on questions about real-world celebrities, such as “Who is Tom
Cruise’s mother? [A: Mary Lee Pfeiffer]” and the reverse “Who is Mary Lee
Pfeiffer’s son?”. GPT-4 correctly answers questions like the former 79% of the
time, compared to 33% for the latter.

Code available at: https://github.com/lukasberglund/reversal_
curse.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer”) do not automatically infer “B is A”.

1 INTRODUCTION

If a human learns the fact “Valentina Tereshkova was the first woman to travel to space”, they can
also correctly answer “Who was the first woman to travel to space?”. This is such a basic form
of generalization that it seems trivial. Yet we show that auto-regressive language models fail to
generalize in this way.

∗Corresponding author: owaine@gmail.com

1

ar
X

iv
:2

30
9.

12
28

8v
4

 [
cs

.C
L

]
 2

6
M

ay
 2

02
4

32 (2) total: 36

神经和符号的结合是实现真正的人类水平智能的必经之路

符号化知识表示的类型及其与大语言模型结合的方法

在Transformer架构中引入符号计算模块的设想

总结

Content

在Transformer架构中引入符号计算模块

▶ 目前，大语言模型和符号化知识表示的唯一接口就是token序列：
▶ 输入：Prompting
▶ 输出：Generation

▶ 其他所有带结构的知识表示，都需要转化成线性的token序列（语言或图像）才
能跟大语言模型交互

▶ 线性化以后的带结构的知识表示，虽然理论上包含了所有的结构信息，但实际
上大语言模型很难准确捕获到完整的结构信息

▶ 是否有可能修改Transformer结构，直接在其中加入符号计算模块？
▶ 类似人脑中有海马体，从仿生角度看，在语言模型内部引入符号计算模块有一定
的合理性

▶ 这种符号处理模块应该能够直接处理实体、关系等具有明确语义的符号，而不仅
仅是tokens

▶ 关于Transformer的可解释性研究的一些工作为这类方案提供了可能性

33 total: 36

Scaling and evaluating sparse autoencoders (OpenAI)

34 total: 36

神经和符号的结合是实现真正的人类水平智能的必经之路

符号化知识表示的类型及其与大语言模型结合的方法

在Transformer架构中引入符号计算模块的设想

总结

Content

总结

▶ 神经和符号的结合是实现真正的人类水平智能的必经之路。
▶ 神经与符号的GAP是目前大模型很多问题的根源。

▶ 不同的符号表示形式发展出来不同的神经符号结合方法：
▶ 自然语言是最自然的符号表示形式，可以直接接口神经网络语言模型，推理需要
借助XoT等方法。

▶ 形式语言包括逻辑语言与程序语言。形式语言是精确的符号表示形式，通过引入
外部执行引擎或者正确性检查机制，再辅以基于强化学习的搜索算法，可以实现
强大的推理能力。

▶ 图表形式的符号化知识，形式多样，跟语言模型结合的方式也有很多种，
如GraphRAG、图（graph）、图像（image）等形式。

▶ 直接在Transformer架构中引入符号计算模块也是值得探索的路径。

35 total: 36

Thank you!

把数字世界带入每个人、每个家庭、
每个组织，构建万物互联的智能世界。
Bring digital to every person, home and organization
for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd.
All Rights Reserved.

The information in this document may contain
predictive statements including, without limitation,
statements regarding the future financial and
operating results, future product portfolio, new
technology, etc. There are a number of factors that
could cause actual results and developments to
differ materially from those expressed or implied in
the predictive statements. Therefore, such
information is provided for reference purpose only
and constitutes neither an offer nor an acceptance.
Huawei may change the information at any time
without notice.

	神经和符号的结合是实现真正的人类水平智能的必经之路
	大语言模型的符号计算能力仍然欠缺
	实现真正的人类水平智能，需要AI模型中引入符号计算吗？
	为什么基于神经网络的语言模型很难达到人类水平智能？
	信息系统抽象的层次
	神经网络的参数化表示与主观认知之间存在GAP
	神经与符号的GAP是目前大模型很多问题的根源

	符号化知识表示的类型及其与大语言模型结合的方法
	符号化知识表示的类型
	符号化知识表示的多样性难题
	符号化知识表示的形式
	符号化知识表示的类型

	自然语言与神经网络结合的方法
	自然语言与神经网络结合的方法
	Chain-of-Thought and Thinking-Step-by-Step
	Self-consistency improves CoT
	Progressive-Hint Prompting improves CoT

	形式语言与神经网络结合的方法
	形式语言与神经网络结合的方法
	MetaMath: 通过训练数据增强改进LLM数学问题求解能力
	The Curry-Howard Isomorphism 科里-霍华德同构
	Lean语言
	Theorem Proving - Holy Grail of AI
	Automated Theorem Proving (ATP) - the Problem
	Interaction between the prover (Lean) and the language model
	DT-Solver (ACL 2023)
	MUSTARD (ICLR 2024)
	LEGO-Prover (ICLR 2024)
	DeepMind: solve IMO problems at a silver medalist level

	图表语言与神经网络结合的方法
	知识图谱、语义网Semantic Web
	知识图谱技术金字塔
	知识图谱与神经网络的结合
	GraphRAG
	符号化知识表示的其他形式
	图像（image）作为大语言模型和符号化知识的接口
	LayoutGPT
	图（Graph）作为大语言模型和符号化知识的接口

	在Transformer架构中引入符号计算模块的设想
	在Transformer架构中引入符号计算模块
	Scaling and evaluating sparse autoencoders (OpenAI)

	总结
	总结

